182 research outputs found

    SWINE WASTE PHYTOREMEDIATION USING DUCKWEED (Landoltia punctata, Les & Crawford) IN A FULL SCALE PLANT

    Get PDF
    Banner Apresentado em Congresso: 11th International Conference, Heraklion, Crete, Greece PhytotechnologiesThe large amount of nitrogen and phosphorous compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Therefore, the aquatic macrophytes group named duckweeds (Araceae; Lemnoideae) have been successfully used for phytoextraction and rhizodegradation of nutrient and heavy metals from swine waste, generating further a biomass with high protein content. The present study evaluated the phytoremediation of nitrogen and phosphorus from swine waste using the duckweed Landoltia punctata and also their protein biomass production as by-product

    Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex

    Get PDF
    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10–20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30–40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys

    Using full-scale duckweed ponds as the finish stage for swine waste treatment with a focus on organic matter degradation

    Get PDF
    Artigo Publicado em: IWA - Water Science & TechnologyThe rapid increase in the number of swine has caused pronounced environmental impacts worldwide, especially on water resources. As an aggregate, smallholdings have an important role in South American pork production, contributing to the net diffusion of pollution. Thus, duckweed ponds have been successfully used for swine waste polishing, mainly for nutrient removal. Few studies have been carried out to assess organic matter degradation in duckweed ponds. Hence, the present study evaluated the efficiency of two full-scale duckweed ponds for organic matter reduction of swine waste on small pig farms. Duckweed ponds, in series, received the effluent after an anaerobic biodigester and storage pond, with a flow rate of 1 m3 day 1. After 1 year of monitoring, an improvement in effluent quality was observed, with a reduction in biochemical oxygen demand (BOD) and total chemical oxygen demand (tCOD), respectively, of 94.8 and 96.7%, operating at a loading rate of approximately 27 kgBOD ha 1 day 1 and 131 kgCOD ha 1 day 1. Algae inhibition due to duckweed coverage was strongly observed in the pond effluent, where chlorophyll a and turbidity remained below 25 μg L 1 and 10 NTU. Using the study conditions described herein, duckweed ponds were shown to be a suitable technology for swine waste treatment, contributing to the environmental sustainability of rural areas

    Swelling and hydration studies on egg yolk samples via scanning fluid dynamic gauge and gravimetric tests

    Get PDF
    AbstractHydration and swelling in initially dry protein-based samples represent the first stage in their cleaning from hard surfaces. These phenomena have been studied in technical egg yolk stains via scanning Fluid Dynamic Gauge (sFDG) and gravimetric tests. Temperature (30 °C to 55 °C) and pH (9.5 to 11.5) were investigated as factors influencing the process. The kinetics did not appear to be significantly different as 95% of the equilibrium swelling was reached at approximately 90 min in all tests. No removal of the egg yolk layer was observed in most cases, except at high alkaline conditions (pH 11.5), where a lift-up followed by a partial removal of the protein network was seen when an external shear stress was applied. The process mimicked creep behaviour of plastic materials. Gravimetric data on the hydration of the sample suggested a Fickian diffusion transport (Case I), where solvent diffusion is the rate limiting stage. The initial hydration was proved to be linear. Two diffusion theories of increasing complexity were applied to estimate effective diffusion coefficients: Fick's second law (with moving boundaries) and a non-linear poroelasticity theory. The temperature dependence of different diffusion coefficients assuming an Arrhenius equation gave an activation energy in the range of 16.4 (±6.7) KJ/mol to 18.4 (±9.0) KJ/mol

    High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds

    Get PDF
    Artigo publicado em: Elsevier - Bioresource TechnologyDuckweed ponds have been successfully used in swine waste polishing, generating a biomass with high protein content. Therefore, the present study evaluated the efficiency of two full-scale duckweed ponds considering nutrient recovery from a piggery farm effluent (produced by 300 animals), as well as the biomass yield and crude protein (CP) content. A significant improvement in the effluent quality was observed, with the removal of 98.0% of the TKN (Total Kjeldahl Nitrogen) and 98.8% of the TP (Total Phosphorous), on average. The observed nitrogen removal rate is one of the highest reported (4.4 g/m2day of TKN). Additionally, the dissolved oxygen level rose from 0.0 to 3.0 mg/L, on average. The two ponds together produced over 13 tons of biomass (68 t/hayear of dry biomass), with 35% crude protein content. Because of the excellent nutrient removal and protein biomass production, the duckweed ponds revealed a great potential for the polishing and valorisation of swine waste, under the presented conditions

    Homography-based ground plane detection using a single on-board camera

    Get PDF
    This study presents a robust method for ground plane detection in vision-based systems with a non-stationary camera. The proposed method is based on the reliable estimation of the homography between ground planes in successive images. This homography is computed using a feature matching approach, which in contrast to classical approaches to on-board motion estimation does not require explicit ego-motion calculation. As opposed to it, a novel homography calculation method based on a linear estimation framework is presented. This framework provides predictions of the ground plane transformation matrix that are dynamically updated with new measurements. The method is specially suited for challenging environments, in particular traffic scenarios, in which the information is scarce and the homography computed from the images is usually inaccurate or erroneous. The proposed estimation framework is able to remove erroneous measurements and to correct those that are inaccurate, hence producing a reliable homography estimate at each instant. It is based on the evaluation of the difference between the predicted and the observed transformations, measured according to the spectral norm of the associated matrix of differences. Moreover, an example is provided on how to use the information extracted from ground plane estimation to achieve object detection and tracking. The method has been successfully demonstrated for the detection of moving vehicles in traffic environments

    Energy recovery from garden and park waste by hydrothermal carbonisation and anaerobic digestion

    Full text link
    Hydrothermal carbonisation (HTC) can transform wet lignocellulosic biomass, which is not considered an effective biofuel for energy production at the industrial level, into a carbonaceous product called hydrochar (HC) that is suitable for combustion and a process water (PW). PW is an interesting by-product that can be valorised for biogas production via anaerobic digestion (AD). This study presents a new approach for the valorisation of garden and park wastes (GPW) by integrating HTC to generate HC for energy production, while PW is subjected to AD for biogas production. The hydrothermal treatment was performed at 180, 210, and 230 °C, yielding HC with improved physicochemical properties, such as an elevated higher heating value (21–25 MJ kg−1); low ash (<5 wt.%), nitrogen (1.3 wt.%), and sulphur (0.2 wt.%) contents; better fuel ratio (0.4–0.6); and a broad comprehensive combustibility index (8.0×10−7 to 9.6×10−7 min−2 °C−3). AD of the generated PW was conducted under mesophilic conditions (35 °C), resulting in a methane production in the range of 253–326 mL g−1 CODadded and COD removal of up to 65%. The combination of HTC and AD allowed the recovery of 91% and 94% of the energy content feedstock, as calculated from the combustion of HC and methane, respectivelyThe authors gratefully acknowledge funding from Spain’s MINECO (PID2019-108445RB-I00; PDC2021-120755-I00) and the Comunidad de Madrid (Project S2018/EMT-4344). R. P. Ipiales acknowledges financial support from the Comunidad de Madrid (IND2019/AMB-17092) and the Arquimea-Agrotech Compan

    The viability of treated piggery wastewater for reuse in agricultural irrigation

    Get PDF
    Artigo publicado em:International Journal of Recycling of Organic Waste in AgricultureThe swine production is a very important economic matter, occupying prominent position in the worldwide market. However, it appears as the greater impacting activity for the water resources. Researches point a swine manure production of 105.6 million m3/year in Brazil, which resulted in a piggery wastewater rich in solids, nutrients, heavy metals, and pathogens. Moreover, the water consumption for swine production is approximately 15 L/animal/day in southern Brazil, resulting in an unsustainable water resource demand. Thereby, this study verifies the viability of two parallel stabilization reservoirs as a technology for polishing treated piggery wastewater. This technology has been shown effective in reducing organic matter, nutrients, and pathogens in the treatment of the effluents with low or high organic load rate. The reservoirs can improve effluent quality with minimal energy costs to simple operations. The technique would promote the value of the effluent through its reuse for agricultural irrigation. The study was conducted at a farm in the city of Braço do Norte, Santa Catarina, in southern Brazil; this region has one of the largest densities of pigs in the world, which causes serious environmental problems

    Thermal impact from a thermoelectric power plant on a tropical coastal lagoon

    Get PDF
    Tropical coastal areas are sensitive ecosystems to climate change, mainly due to sea level rise and increasing water temperatures. Furthermore, they may be subject to numerous stresses, including heat releases from energy production. The Urias coastal lagoon (SE Gulf of California), a subtropical tidal estuary, receives cooling water releases from a thermoelectric power plant, urban and industrial wastes, and shrimp farm discharges. In order to evaluate the plant thermal impact, we measured synchronous temperature time series close to and far from the plant. Furthermore, in order to discriminate the thermal pollution impact from natural variability, we used a high-resolution hydrodynamic model forced by, amongst others, cooling water release as a continuous flow (7.78 m3 s?1) at 6 °C overheating temperature. Model results and field data indicated that the main thermal impact was temporally restricted to the warmest months, spatially restricted to the surface layers (above 0.6 m) and distributed along the shoreline within ?100 m of the release point. The methodology and results of this study can be extrapolated to tropical coastal lagoons that receive heat discharges.<br/

    Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): Southern Brazil

    Get PDF
    Artigo publicado em: IWA - Water Sciencie et TechnologyBrazil is one of the most important countries in pork production worldwide, ranking third. This activity has an important role in the national economic scenario. However, the fast growth of this activity has caused major environmental impacts, especially in developing countries. The large amount of nitrogen and phosphorus compounds found in pig manure has caused ecological imbalances, with eutrophication of major river basins in the producing regions. Moreover, much of the pig production in developing countries occurs on small farms, and therefore causes diffuse pollution. Therefore, duckweed pond have been successfully used in the swine waste polishing, generating further a biomass with high protein content. The present study evaluated the efficiency of two full scale duckweed ponds for the polishing of a small pig farm effluent, biomass yield and crude protein (CP) content. Duckweed pond series received the effluent from a biodigester-storage pond, with a flow rate of 1 m3/day (chemical oxygen demand rate ¼ 186 kg/ha day) produced by 300 animals. After 1 year a great improvement of effluent quality was observed, with removal of 96% of total Kjeldahl nitrogen (TKN) and 89% of total phosphorus (TP), on average. Nitrogen removal rate is one of the highest ever found (4.4 g TKN/m2 day). Also, the dissolved oxygen rose from 0.0 to 3.0 mg/L. The two ponds produced together over 13 tons of fresh biomass (90.5% moisture), with 35% of CP content, which represents a productivity of 24 tonsCP/ha year. Due to the high rate of nutrient removal, and also the high protein biomass production, duckweed ponds revealed, under the presented conditions, a great potential for the polishing and valorization of swine waste. Nevertheless, this technology should be better exploited to improve the sustainability of small pig farms in order to minimize the impacts of this activity on the environment
    corecore